Multi-swarm Optimization in Dynamic Environments

نویسندگان

  • Tim Blackwell
  • Jürgen Branke
چکیده

Many real-world problems are dynamic, requiring an optimization algorithm which is able to continuously track a changing optimum over time. In this paper, we present new variants of Particle Swarm Optimization (PSO) specifically designed to work well in dynamic environments. The main idea is to extend the single population PSO and Charged Particle Swarm Optimization (CPSO) methods by constructing interacting multi-swarms. In addition, a new algorithmic variant, which broadens the implicit atomic analogy of CPSO to a quantum model, is introduced. The multi-swarm algorithms are tested on a multi-modal dynamic function – the moving peaks benchmark – and results are compared to the single population approach of PSO and CPSO, and to results obtained by a state-of-the-art evolutionary algorithm, namely self-organizing scouts (SOS). We show that our multi-swarm optimizer significantly outperforms single population PSO on this problem, and that multi-quantum swarms are superior to multi-charged swarms and SOS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems

The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...

متن کامل

Clustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization

So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

mNAFSA: A novel approach for optimization in dynamic environments with global changes

Artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligence algorithms that is widely used for optimization purposes in static environments. However, numerous real-world problems are dynamic and uncertain, which could not be solved using static approaches. The contribution of this paper is twofold. First, a novel AFSA algorithm, so called NAFSA, has been proposed in...

متن کامل

Tracking Extrema in Dynamic Environment using Multi-Swarm Cellular PSO with Local Search

Many real-world phenomena can be modelled as dynamic optimization problems. In such cases, the environment problem changes dynamically and therefore, conventional methods are not capable of dealing with such problems. In this paper, a novel multi-swarm cellular particle swarm optimization algorithm is proposed by clustering and local search. In the proposed algorithm, the search space is partit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004